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< ABSTRACT >

If a hierarchical structure exists in educational measurement data and examinees
within groups are homogeneous, a multilevel item response theory (MLIRT) model may
be appropriate. Among the MLIRT models, the multilevel Rasch model is equivalent to
a generalized linear mixed model (GLMM) with a logit link where person abilities are
considered random effects and item difficulties fixed effects. Then the Ime4 package in
R can be used to fit the multilevel Rasch model. In this study, it was shown how the
multilevel Rasch model can be formulated as a three-level GLMM, followed by a
simulation analysis, where intraclass correlation (ICC) of latent abilities as a measure

of within-group homogeneity was manipulated from low to high under the conditions of
small to large numbers of examinees and items. Item parameter estimates by marginal
maximum likelihood estimation (MMLE) were compared with those obtained under the
GLMM framework. Biases of item parameter estimates by both methods were not
evident in all conditions. However, estimation results by MMLE became proportionally
less accurate as the ICC increased when the number of examinees was small. If the
number of examinees was large, estimation accuracies of MMLE were acceptable even
when a high level of within—group homogeneity existed. GLMM produced stable results
at all levels of ICC. In all conditions, the number of examinees was more influential
than the number of items.

Key Words : Within-Group Homogeneity, Multilevel Rasch Model, Intraclass Correlation,
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I . Introduction

In education research, data sets often have a multilevel structure; that is, students are nested within
classrooms, classrooms are nested within schools, schools are nested within school districts, and so
on. When such a multilevel or hierarchical structure exists in the data, units at a lower level may
resemble each other within a higher level group (e.g., classroom or school). For example, students
attending the same school share many similarities such as living environments, parents' socioeconomic
status, cultural norms, etc. while students attending different schools do not share those similarities.
Then students can be homogeneous within groups and heterogeneous between groups.

The intraclass correlation (ICC) is defined as the ratio of between-group variability to the overall
variability, which is again decomposed into between-group variability and within-group variability. It
is an indicator of between-group heterogeneity for multilevel data. High ICCs are often of interest to
educators and policy makers because it may indicate students' achievement gap due to unbalanced
distribution of education resources. When a high ICC is observed for a hierarchically structured data
set, a multilevel model needs to be considered (Snijders & Bosker, 1999; Raudenbush & Bryk, 2002).

As a hierarchical linear model (HLM) instead of a single-level linear regression can be suited for
hierarchical data, a multilevel item response theory (MLIRT) model may replace an ordinary item
response theory (IRT) model for educational measurement data when student abilities are more similar
within groups (e.g., schools) than across groups. Although at least two levels are assumed for
multilevel models such as HLMs, even ordinary IRT models are two-level models because item
responses are nested within persons (Kamata, 2001, 2002; Raudenbush & Bryk, 2002). For MLIRT
models, it is further assumed that person abilities are nested within higher-level groups. Therefore,
MLIRT models have at least three levels.

Since MLIRT is a multilevel extension of IRT models (Adams, Wilson, & Wu, 1997), there can
be as many MLIRT models as there are IRT models for dichotomous or polytomous items. Software
programs of parameter estimation for multilevel extensions of the two- or three-parameter logistic IRT
models for dichotomous items and of some models for polytomous items are available as a package
(Fox, 2007) in R (R Development Core Team, 2012) and as a WinBUGS (Spiegelhalter, Thomas,
Best, & Lunn, 2003) program (Natesan, Limbers, & Varni, 2010), all of which use a Markov chain
Monte Carlo (MCMC) estimation algorithm (Albert, 1992; Patz & Junker, 1999a, 1999b; Fox, 2005;
Fox & Glas, 2001).

For parameter estimation of the Rasch model (Rasch, 1960), which is equivalent to the
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one-parameter logistic model (IPLM), and its multilevel extension, the model parameters can also be
estimated using the framework of a hierarchical generalized linear model (HGLM; Raudenbush &
Bryk, 2002) or a generalized linear mixed model (GLMM; McCulloch & Searle, 2001). Rijmen,
Tuerlinckx, De Boeck, & Kuppens (2003) illustrated how IRT models can be understood in a
nonlinear mixed model framework. Kamata (2001, 2002) successfully demonstrated that the Rasch
model is an HGLM and illustrated how its parameters can be estimated using the HLM software
package (Raudenbush, Bryk, Cheong, & Congdon, 2006). Doran, Bates, Bliese, and Dowling (2007)
as well as De Boeck et al. (2011) also showed how to fit the multilevel Rasch model using the R
package Ime4 (Bates & Maechler, 2010) for mixed-effects models. The Ime4 package can be used to
estimate the parameters of the Rasch model by treating the student abilities as random effects and the
item difficulties as fixed effects, which also bases the logic of marginal maximum likelihood
estimation (MMLE) in IRT (Baker & Kim, 2004; Bock & Aitkin, 1981).

For the Rasch model, parameter estimates by MMLE and those from the GLMM methods are
expected to be similar when there are only one group of students. If the students form several
groups, however, parameter estimates by MMLE can be less accurate because only one population is
generally assumed for MMLE. On the other hand, GLMM can accommodate a grouping level, and, if
the grouping variable is correctly specified in the GLMM approach, it can produce more accurate
estimates.

In spite of recent advances in MLIRT modeling, a multilevel structure of data is often ignored in
practices of educational measurement. Also, it is not quite clear what the actual outcome will be if
an ordinary IRT model is used when an MLIRT model fits. For dichotomously-scored test data,
BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 2003) implementing MMLE is widely used. It is
worth investigating how the performance of MMLE is compared with that of the GLMM approach as
the level of within-group homogeneity varies under various conditions of sample sizes and numbers of
items. In this study, more details of the multilevel Rasch model as a GLMM are discussed, followed
by a simulation analysis comparing the two approaches on different levels of within-group
homogeneity under the simulation conditions considered.

It is expected that model parameter recovery will somehow be less accurate if existing
within-group homogeneity is ignored. However, little is known as to when we should use MLIRT
instead of IRT models and how robust MMLE is when within-group homogeneity exists. It is of
interest to the practitioners of educational measurement how much within-group homogeneity can be
ignored to stick to MMLE since it is now the de facto standard. Although only the multilevel Rasch

model is investigated, the results from this study may easily be generalized to other MLIRT models.
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II. Theoretical Background

1. Intraclass Correlation as a Measure of Within—Group Homogeneity

Even with hierarchically structured data, a multilevel analysis may not be necessary if there is no
homogeneity within groups. That is, a multilevel analysis may not improve the results if students are
not different across groups. Therefore, not only hierarchical structure but also the level of
within-group homogeneity is important when deciding to use a multilevel model. Since the ICC is a
measure of the level of within-group homogeneity for hierarchically structured data, it is useful when
deciding whether to use a multilevel model (Raudenbush & Bryk, 2002; Snijders & Bosker, 1999).

For an outcome variable of the hierarchically structured data, the ICC is the ratio of the
higher-level variance to the total variance (Snijders & Bosker, 1999). The ICC can be defined using

the following random-effects analysis of variance (ANOVA) model:
Yy =p+U;+ Ry, M

where V.. is the i

i observed value in group j, p is the overall mean, U is the group-level

random effects, and R;; is the individual-level random effects. As random effects, both U and R
are assumed to be normally distributed with means of zero and variances of o3, and o%, respectively.
It is further assumed that o7, and o% are uncorrelated with each other. Thus, the total variance
consists only of the two variance components. Then the ICC coefficient, p, is defined as the ratio of

0% to the sum of o7 and o%.

2
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Since the ICC is a ratio of variances, it can take only non-negative values although it is called a
correlation coefficient. The ICC becomes zero when there is no group-level variance, meaning that
groups are not heterogeneous at all. When there is no individual-level variance or when the individual
observations are the same within groups while groups differ, the ICC becomes one. As the units in

the same groups become more homogeneous, p also increases.
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2. Multilevel Rasch Model as a GLMM

The multilevel Rasch model as a multilevel extension of the Rasch model (Adams et al., 1997)
can be understood as a generalized Rasch model. Adams, Wilson, and Wang (1997) presented the
multidimensional random coefficients multinomial logit model (MRCMLM) as a most generalized
form of the Rasch model, which may include the multilevel Rasch model as a special case. However,
the ConQuest software program (Wu, Adams, & Wilson 1997) implementing the MRCMLM can
include only person level random effects (Kamata & Cheong, 2007) and may not be used for the
multilevel Rasch model.

When an educational assessment data set was obtained from multiple groups of examinees, the
level of achievement by examinees in the same groups is often similar while groups differ. Such
between-group heterogeneity as indicated by a high ICC is an issue to be resolved in education
because the high ICC may represent education gap due to different resources available to the groups.
For example, lack of education opportunities in an underdeveloped region in a country often results in
high ICCs.

Different group-level achievements can be modeled by allowing random effects for the group
means. Since person abilities in the Rasch or IRT models assume random effects (Baker & Kim,
2004), the multilevel Rasch model can be obtained by having group-level as well as person-level
components for the variance of person abilities. The formulation of the multilevel Rasch model is

shown as follows. If groups do not exist or can be ignored, the Rasch model has two levels.

At Level 1:

_ exp (Qi—b,)
Pif_1+exp (Hf—b,), 3

where p,; is the probability of correct answer by person j on item i, 6,

; is the latent ability of

person j, and b, is the difficulty of item i. The probability is expressed as a logistic function, which
is why the Rasch model is equivalent to the 1PLM. Equation 3 can also be expressed in a logit

form. Therefore, the Rasch model can be viewed as a GLMM with a logit link (Equation 4).

>
lo L
: [

ii

J = logit (p,)=6,-b, @

- 245 -



WSAZEIIATD H15H H2S (2012)

At Level 2:
0./ = H + 5/' > (5)

where 4 is the grand mean, and ¢; is the residual term representing the random effects of person
abilities, which is assumed to be normally distributed with a mean of zero and variance of o2. Note
that no distributional assumptions are necessary for fixed-effect item parameters.

Since latent abilities have no inherent metric, a constraint is required at Level 2 to identify the
model. It suffices to fix u at zero if 6 is assumed to follow a normal distribution. In IRT models
including the Rasch model, person abilities, 6, are generally considered random effects and item
difficulties fixed effects (Baker & Kim, 2004; de Ayala, 2009). It is also possible to view both
person ability and item difficulty parameters as fixed effects. Then another approach (e.g., fixing the
mean of item parameter estimates at zero) is needed for model identification. In this study, however,
all IRT models are assumed mixed-effects models.

In order to extend the Rasch model to a three-level model, we need an additional subscript k to

accommodate the group level.
At Level I:
logit (p,, )= 6, —b,, ©)

where p,; is the probability of correct answer on item i by person j in group £, 0 is the latent
ability of person j in group k. Since fixed effects are assumed on b, its form and interpretation are

the same as in the two-level model.
At Level 2:
ejk :ﬂ'k+5jk, @)

where A, is the ability mean of group & and J is the residual term, which is assumed to follow
a normal distribution with a mean of zero and variance of ai. That is, group variances may differ

across groups.
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At Level 3:
A, =u+e,, ®)

where 4 is the grand mean and ¢, represents variability among the groups with an assumption to
follow N(0, o?).

The three-level model requires more constraints than the two-level model for identification. First, u
is fixed at zero, and then within-group variances are made equal for all groups. That is, the &

subscript is dropped for the variance of §, (i.e., o’ becomes o?). Then the three-level Rasch model
can be fitted as a GLMM.

Although 6s are not outcome variables, the ICC of latent abilities can be defined like the
following as Equation 2 was derived from Equation 1.

2
o

£

ol rol s ©

where o and o} are between-group and within-group variances of 6. The ICC for 6 can be
estimated as such because within-group variances were constrained to be equal across the groups. The
ICC of 6 in Equation 9 shows how much latent abilities are clustered within groups. One of the
advantages of using the GLMM framework for the multilevel Rasch model is that the ICC can also

be estimated since variances are estimated at both individual and group levels.

3. Parameter Estimation of the Multilevel Rasch Model

In the original framework of the Rasch model, both person ability and item difficulty parameters
were considered fixed effects (Rasch, 1960). Then the person ability and item difficulty parameters
should be estimated simultaneously, or jointly, and this estimation procedure is thus named joint
maximum likelihood estimation (JMLE), which is available in WINSTEPS (Linacre, 2006). Since
JMLE is known to produce inconsistent parameter estimates (Baker & Kim, 2004), person ability
parameters were removed from calibration by conditioning on sufficient statistics such as the sum
score (conditional maximum likelihood estimation) or through integration (MMLE). Among the

maximum likelihood estimation (MLE) methods available for the Rasch model, only MMLE was
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considered in this study because it is comparable to the estimation algorithm for the GLMM.

For the multilevel Rasch model, parameters can be estimated using an MCMC algorithm such as
Gibbs sampling implemented in WinBUGS (Spiegenhalter et al., 2003). This study, however, focuses
on the multilevel Rasch model as a special case of GLMMSs. Thus, estimation of the multilevel Rasch
model parameters is considered in the GLMM framework. Even within the GLMM framework,
estimation of the multilevel Rasch model is available in other software packages such as HLM
(Raudenbush et al., 2006) or SAS NLMIXED procedure (Rijmen et al., 2003), but only estimation in
the free statistical computing system R (R Development Core Team, 2012) is used in this study.

. Method

1. Data

The simulation analysis in this study considered conditions in which the data size and the level of
within-group homogeneity varied. First, the number of test items varied from small (20 items) to
large (60 items). Except for such rare cases as international comparative study in which a matrix
sampling design is applied, the number of test items of most testing programs fall within this range.
Second, the number of examinees also varied from small (500 examinees) to medium (2,000
examinees) and large (5,000 examinees). The minimum sample size was chosen because 500
examinees were recommended for reliable estimation of the Rasch model parameters (Wright, 1977).
Although there are many cases where more than 5,000 examinees take a test, 5,000 examinees were
considered to be large enough for precise estimation of the parameters of the multilevel Rasch model.
Also, unlike MMLE approaches where data are in a matrix format, data are arranged in a single
column vector when a GLMM is applied. When 5,000 examinees take a 60-item test, there are
300,000 cases to be analyzed to estimate parameters. Thus, it may take too long to analyze a larger
data set. Third, the ICC coefficient was manipulated from .1 (i.e., very low within-group
homogeneity) to .9 (i.e., very high within-group homogeneity) with an increment of .1. Thus, nine
conditions were considered for different levels of ICC.

The number of examinees or level 2 units within groups was fixed at 100; thus, only the number
of groups varied from five to 20 or 50. Although the number of examinees within groups may

influence the accuracy of parameter estimation, this study focused only on the group size and the
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number of items. The three simulation factors were fully crossed, producing 54 (=2x3x9) simulation
conditions. Each of the 54 conditions was replicated 100 times, and MMLE (as the Rasch model) and
GLMM (as the multilevel Rasch model) approaches were compared for each replication of the
conditions.

The three-level model in Equations 6-8 was used to generate data sets. The b-parameters were
generated from N(0, 1), and the A\ and 6 were generated from N(0, o%) and N(0, o}), respectively.
Although o2 and o2 were manipulated for different levels of ICC, their sum was set at 1.0 to make
the item parameter estimates comparable between GLMM and MMLE approaches because
BILOG-MG fixes the mean and variance of 6 at zero and one, respectively. For example, o2 and o3

were set at .8 and .2, respectively, for a condition of the ICC being .8.

2. Analysis

The items of the generated data sets were calibrated using BILOG-MG (Zimowski et al., 2003) for
MMLE and also using the /mer function of the Ime4 R package (Bates & Maechler, 2010) under the
GLMM framework. Note that the multilevel structure was not considered for MMLE while the
group-level random effects were also estimated for the GLMM. For both MMLE and GLMM
estimation, default settings of BILOG-MG and the Imer function were used.

After items were calibrated, estimated item parameters were compared with the generating
parameters for bias and root mean square error (RMSE) as a measure of estimation accuracy. For
each condition, bias and RMSE were calculated for each replication, and they were averaged over the

100 replications. The equations for bias and RMSE were as follows:

bias = Z——— (10)

(1

Unlike JMLE, MMLE is known to produce unbiased item parameter estimates; however, it was of
interest if ignoring multilevel data structure introduced any biases in parameter estimates. More

interestingly, it was investigated how the accuracy of item parameter estimation (i.e., RMSE of item
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parameters) was impacted as the level of within-group homogeneity varied.

In this study, only the recovery of item parameters was investigated. Although person ability
estimates can be obtained as empirical Bayes estimates, estimation of latent abilities is often
conducted in practice using an MLE algorithm after item parameter estimates are confirmed. Since the
recovery of person abilities can be confounded by the accuracy of item parameter estimates, only

item parameter recovery was examined.

IV. Results

<Table 1> shows biases of item parameter estimates by GLMM averaged over 100 replications,

rounded to the second decimal. It shows that the parameter estimates are unbiased across all 54

conditions.
(Table 1) Bias of Item Parameters Estimated by GLMM

Size* ec

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20/500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
60/500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20/2,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
60/2,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20/5,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
60/5,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

* number of items/number of examinees

<Table 2> shows that item parameter estimates by MMLE are also almost unbiased. Item
parameter estimates are unbiased when there were 5,000 examinees. On the other hand, nonzero
biases were sometimes observed for MMLE when the number of simulees was 500 or 2,000. Biases
were closer to zero when 60 items were simulated than when only 20 items were used. However, the
differences by the number of item conditions were not as big as the differences by the number of

simulees.
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(Table 2) Bias of Item Parameters Estimated by MMLE

Size* ec

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20/500 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 -0.02 0.02
60/500 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.01 0.00
20/2,000 0.00 0.00 0.00 0.01 0.00 0.01 0.01 -0.01 0.01
60/2,000 0.00 0.00 0.00 0.00 0.00 0.01 0.00 -0.01 0.01
20/5,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
60/5,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

* number of items/number of examinees

<Table 3> and <Table 4> show RMSEs of item parameter estimates by GLMM and MMLE,
respectively. <Table 3> shows that accuracy of item parameter estimation improves as the number of
items and the number of examinees become larger. The effects of the number of examinees were
much greater than those of the number of items. RMSEs were close across the nine ICC coefficient

conditions in each row.

(Table 3) RMSE of Item Parameters Estimated by GLMM

Size* ce
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20/500 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
60/500 0.10 0.10 0.10 0.09 0.10 0.10 0.10 0.10 0.10
20/2,000 0.05 0.07 0.06 0.06 0.05 0.05 0.06 0.05 0.04
60/2,000 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.04 0.04
20/5,000 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04
60/5,000 .03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03

* number of items/number of examinees

(Table 4) RMSE of Item Parameters Estimated by MMLE

Size* ce
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20/500 0.13 0.14 0.16 0.17 0.20 0.23 0.27 0.32 041
60/500 0.13 0.15 0.16 0.18 0.20 0.24 0.26 0.33 0.40
20/2,000 0.06 0.07 0.07 0.07 0.07 0.09 0.12 0.15 0.22
60/2,000 0.08 0.07 0.06 0.08 0.07 0.09 0.13 0.15 0.23
20/5,000 0.04 0.05 0.05 0.06 0.06 0.07 0.07 0.08 0.09
60/5,000 0.04 0.05 0.05 0.06 0.06 0.07 0.08 0.08 0.09

* number of items/number of examinees
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The most interesting results were RMSEs of item parameter estimates by MMLE shown in <Table
4>, which was also graphically displayed in (Figure 1]. It shows that the number of items did not
cause big differences while the number of examinees made a huge difference across the three levels
(i.e., 500 or 2,000 or 5,000 examinees). When there were 500 examinees, the RMSEs showed an
almost linear and steep increase. On the other hand, as ICC increased, the RMSEs were rather flat
and the gap between the 500-examinee condition and the 5,000-examinee condition became larger.
When there were 2,000 examinees, RMSEs were located between the two other conditions for the
number of examinees (500 or 5,000). Generally, the results by the 2,000 examinee conditions were
more similar to those of the 5,000 examinee conditions than those of the 500 examinee conditions.
Indeed, RMSEs were quite similar between when there were 2,000 examinees and when there were
5,000 examinees except when the ICC was close to .9. Although not shown graphically, the
differences beteen RMSEs by GLMM and MMLE were substantially small when a large number of

examinees took the test (see <Table 3> and <Table 4>).

RMSE of Item Parameter Estimates by MMLE

0.45

=@ = 20/500
=== 60/500
soule® 20/2,000
e 60/2,000
w=le  20/5,000

= ®= 60/5,000

IcCc

(Figure 1) RMSE of ltem Parameters Estimated by MMLE
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V. Discussion and Conclusion

As achievement gap is found among schools or units larger than schools, students within groups
can be more similar within groups than across groups, which justifies the necessity of applying
multilevel models when analyzing education data. With educational measurement data, an MLIRT
model can be an alternative to ordinary IRT models when the level of within-group homogeneity is
high. Among the MLIRT models, the multilevel Rasch model can relatively easily be applied to
educational measurement data since it is equivalent to a GLMM.

In this study, first, it was shown how the Rasch model and its multilevel extension could be
formulated as two- or three-level GLMMs, and how their parameters could be estimated in a GLMM
framework. When item difficulty and person ability parameters were regarded as fixed and random
effects, respectively, the Rasch model was equivalent to a GLMM with a logit link. The estimation
procedure was also compared with an MMLE algorithm for the Rasch model. Then a simulation
analysis was conducted to compare item parameter estimates by MMLE ignoring the multilevel
structure of data and those of the GLMM framework accommodating a grouping variable. 54
conditions were simulated where a small/large number of test items were taken by a
small/medium/large number of examinees. Also, ICCs of latent abilities were manipulated from low to
high within-group homogeneity.

From the results, biases were not evident in both MMLE and GLMM. However, while RMSEs by
GLMM were relatively low and rather constant with an increase of ICCs, a substantial decrease was
observed as the number of examinees increased from low to high. On the other hand, RMSEs by
MMLE were large and almost linearly increased as ICC coefficients became larger when only 500
simulees were used. Yet, RMSEs were small and did not increase much as ICC coefficients became
higher when there were 5,000 examinees. When there were 2,000 examinees, RMSEs were similar to
those by 5,000 examinees except when the ICC was close to .9.

This study showed that a multilevel analysis should be considered if measurement data were
collected from multiple groups, the groups are somewhat heterogeneous, and the size of the data is
small (i.e.,, small number of items and examinees). However, parameter estimates by MMLE, a
standard procedure by most test practitioners, are also accurate and dependable if the data size is
large. In particular, a large number of examinees are crucial. Practically speaking, MMLE approaches
are acceptable when there are more than 2,000 examinees. If between-group heterogeneity is too

evident, however, more examinees could be necessary.
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The fact that the Rasch model is equivalent to a GLMM has been known to the educational
measurement research community (e.g., Kamata, 2001; Raudenbush & Bryk, 2002), and the GLMM
framework for the Rasch model provides a powerful estimation program freely available in R.
Moreover, the Rasch model as a GLMM can easily accommodate a grouping variable in the model.
In this study, the Rasch model and its multilevel extension were formulated as two- and three-level
GLMMs. In addition, it was explained how the MMLE for the Rasch model is comparable to the
estimation procedure for the Rasch model as a GLMM because item parameters were treated as fixed
effects and person abilities as random effects in both estimation algorithms.

MLIRT models have been presented as an alternative model when the ordinary Rasch model does
not fit the data. For example, Kamata and Cheong (2007) applied the multilevel Rasch model for
reading and mathematics assessment data taken by students nested within schools. Very few, if any,
studies investigated how much within-group heterogeneity as indicated by a high ICC can be tolerated
by the Rasch model without incorporating the grouping level. Since there are numerous ways to
group students in an educational assessment, the grouping structure is often ignored when analyzing
data. This study provides a practical guideline for when to adopt and when not to adopt multilevel
modeling approaches.

Using the GLMM framework for the multilevel Rasch model provides not only more accurate item
parameter estimates but also additional advantages such as model fit indices and estimates of
variances at different levels. In the output of the /mer function, model fit indices such as Akaike
information criterion (AIC; Akaike, 1974) and Bayesian information criterion (BIC; Schwarz, 1978)
are available in addition to deviance statistics. These indices are useful when nested or nonnested
models are compared for goodness of fit. Also, the /mer function estimates variances of random
effects at both individual and group levels. These variance estimates can then be used to estimate the
ICC of # as an indicator of within-group homogeneity.

Although this study guides when to use multilevel models when data are hierarchically structured,
it also has limitations. First of all, more simulation conditions could be necessary. The number of
items did not cause large variations in this study, but it needs to be confirmed if the number of
items is indeed a nonsignificant factor. Also, the number of examinees within groups was fixed in all
conditions in this study. Although it is not easy to implement different group sizes since it may
exponentially increase simulation conditions, other conditions could be considered in future studies.
Second, JMLE can also be compared with the other estimation methods. JMLE was not considered in
this study because it is known to produce biased parameter estimates due to its inconsistency

problem. However, JMLE is widely used for the Rasch family models (e.g., Linacre, 2006) and may
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be considered in future studies. Third, since a multi-group approach as implemented in BILOG-MG
(Zimowski et al., 2003) can be used for data with multiple groups, we need to investigate if it is
another viable option instead of using a GLMM.

Last, only the multilevel Rasch model was considered in this study because similar results were
expected for other IRT modes; however, the expectations need to be confirmed. Considering the
popularity of the three-parameter logistic model (3PLM) in educational measurement, similar analyses
using an MLIRT model as an extension of the 3PLM can be informative to users of the model. Also,
the effects of within-group homogeneity on the analysis of polytomously-scored items will be worth

while to study.
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